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Abstract

In this paper we study overcomplete systems of coherent states associated to compact integral symplectic manifolds by
geometric quantization. Our main goals are to give a systematic treatment of the construction of such systems and to collect some
recent results. We begin by recalling the basic constructions of geometric quantization in both the Kähler and non-Kähler cases. We
then study the reproducing kernels associated to the quantum Hilbert spaces and use them to define symplectic coherent states. The
rest of the paper is dedicated to the properties of symplectic coherent states and the corresponding Berezin–Toeplitz quantization.
Specifically, we study overcompleteness, symplectic analogues of the basic properties of Bargmann’s weighted analytic function
spaces, and the ‘maximally classical’ behavior of symplectic coherent states. We also find explicit formulas for symplectic coherent
states on compact Riemann surfaces.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Coherent states are ubiquitous in the mathematical physics literature. Yet there seems to be a lack of general theory
in the context of geometric quantization. This paper is an attempt to partially fill this gap.

We will define coherent states associated to an arbitrary integral compact symplectic manifold (M, ω) using the
machinery of geometric quantization. The metaplectic correction will not play a role in this construction and will
be omitted for simplicity. In the non-Kähler case there are at least two common methods of quantizing M : almost
Kähler [6,24] and Spinc [13,23,25,29] quantization. The definition of coherent states which we will describe is
similar in both cases, although for technical reasons is somewhat simpler in the almost Kähler case. In contrast to the
quantization of a Kähler manifold, in both Spinc and almost Kähler quantization a quantum state does not necessarily
have a nice holomorphic local form. As a consequence, it is difficult to control the global behavior of the quantum
states and, as we will see, the condition that M is compact becomes essential. This is not to say that the properties of
the coherent states are different in the non-compact case — it is simply not clear to the author how to proceed (see [24]
for some recent progress in this direction).
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The definition of coherent states that we will make is semi-constructive. It will depend on a choice of basis for
the quantum Hilbert space arising from geometric quantization. Since such a basis is not always available, finding
an explicit form for the corresponding coherent states may be difficult. On the other hand, the abstract approach
taken here demonstrates that many of the traditional properties of coherent states follow from general considerations.
We will refer to the coherent states constructed here as symplectic coherent states in order to distinguish them from
specific instances.

We should point out that symplectic coherent states are not, in general, of Perelomov-type [27]; i.e. they are
not orbits of a fiducial vector under the action of a Lie group. In some specific cases symplectic coherent states and
Perelomov coherent states coincide — for example in the quantizations of C and S2 (see Section 6), where the methods
of Perelomov yield a reproducing system in the quantum Hilbert space that arises from geometric quantization. In fact,
when this happens, the two constructions must agree (Theorem 4).

The coherent state map we will study has appeared in a different (but in some ways equivalent) form in [7] where
it is used to prove a symplectic analogue of Kodaira’s embedding theorem. In [7], the coherent states lie in a different
quantum Hilbert space and are associated to a circle bundle over M . In [24], Ma–Marinescu analyze the semiclassical
properties of generalized Bergman kernels. This analysis leads to the notion of a peak section, which is related to
symplectic coherent states (Section 3.2). In [28], Rawnsley globalized the constructions of Perelomov [27] to make a
general definition of a coherent state on Kähler manifolds. When applied to the specific case of a principal C×-bundle
over M the coherent states constructed here and the Rawnsley type coherent states are related (see Section 3.3). The
properties of Rawnsley-type coherent states, as well as the geometric interpretation of Berezin quantization which
they provide, are studied in [9,10]. Symplectic coherent states are associated to M itself, and can be associated to a
non-Kähler symplectic manifold.

Symplectic coherent states generalize many of the systems constructed in the literature. The most basic examples of
coherent states are those associated to the complex plane — the simplest Kähler manifold. These states are known as
Segal–Bargmann–Heisenberg–Weyl (or some permutation thereof) coherent states, or often more simply as canonical
coherent states; see [12], for example, where they are developed using projective representations of the symplectic
group on the quantum Hilbert spaces of Section 2.2. Canonical coherent states are briefly described in Section 6.
Ref. [17] contains a survey on many traditional mathematical aspects of canonical coherent states, the introduction of
which also includes a discussion of what, in general, should be called a coherent state.

Following [17] (and to some extent popular opinion) we will define a system of coherent states to be a set
{|x〉 ∈ H | x ∈ M} of quantum states in some quantum Hilbert space H, parameterized by some set M , such
that:

(1) the map x 7→ |x〉 is smooth, and
(2) the system is overcomplete; i.e.∫

M
|x〉〈x | dµ(x) = 1H.

Physicists usually call property (2) completeness. As we will see, the map x 7→ |x〉 is actually antiholomorphic
in a sense appropriate to non-Kähler manifolds. The parameterizing set M is generally, and for us will be, a classical
phase space; i.e. an integral symplectic manifold.

We motivate our construction of coherent states by recalling some basic quantum mechanics. The following
observations are well known ([17] and [20, Chapter 3]). Let us, for a moment, eschew definitions and rigor in order
to see how to proceed. The position space wave function representing a state |ψ〉 is ψ(x) = 〈x |ψ〉, where |x〉 is a
coherent state localized at x . The position space wave function of the coherent state |x〉 is then

K (x, y) := Kx (y) := 〈y|x〉.

We can use this to rewrite the equation 〈x |ψ〉 = ψ(x) as∫
K (x, y)ψ(y) dy = ψ(x). (1)

A function K that satisfies (1) for some space of functions is called a reproducing kernel for that space. Reading the
above discussion backwards, we see that a coherent state can be defined in terms of a reproducing kernel. We will use
this approach and define symplectic coherent states in terms of reproducing kernels for the quantum Hilbert spaces



W.D. Kirwin / Journal of Geometry and Physics 57 (2007) 531–548 533

arising from geometric quantization, sometimes called generalized Bergman kernels; properties (1) and (2) will then
follow. This construction is well known for the Kähler quantization of C and yields the Bergman reproducing kernel,
which in turn yields the canonical coherent states. The asymptotics of generalized Bergman kernels are studied in [6,
7,11,23,24] and will be important when we consider the semiclassical limit.

Example 1. A reproducing kernel for the space S(R) of Schwartz functions on R is the Dirac distribution δ(x − y).

Symplectic coherent states associated to the Poincaré disc, and hence via Riemann uniformization to compact
Riemann surfaces of genus g ≥ 2, were used in [18,19] to study the semiclassical limit of the deformation
quantizations of these surfaces. We will give explicit formulas for these coherent states in Section 6.

The rest of the paper is organized as follows: in Section 2 we review the geometric quantization of a Kähler
manifold (M, ω) and two generalizations to the non-Kähler case known as the almost Kähler and Spinc quantizations
of (M, ω). In Section 3 we define the reproducing kernel for the quantum Hilbert space associated to M by geometric
quantization and use it to define symplectic coherent states. We also describe symplectic analogues of some analytic
function space results of [2], and the relationship between Rawnsley-type and symplectic coherent states. In Section 4
we discuss the overcompleteness relation and the coherent state quantization induced by the symplectic coherent
states. In Section 5 we show that symplectic coherent states are the most classical quantum states and consider the
semiclassical limit. Finally, in Section 6 we apply the constructions of Section 3 to compact Riemann surfaces.

2. Background and notation

2.1. Prequantization

Throughout we assume that (M, ω) is an integral compact symplectic manifold; i.e.
[
ω

2π

]
is in the image of the

map H2(M; Z) → H2
DR(M). The basic object of geometric quantization is an Hermitian line bundle π : ` → M with

compatible connection ∇ with curvature −iω, known as the prequantum line bundle. The existence of ` is guaranteed
by the integrality of ω; in fact the Chern character of `⊗k is ch(`⊗k) = exp(k

[
ω

2π

]
). For detailed accounts of geometric

quantization see [14,31].
We denote by h : `x ⊗ `x → C the Hermitian structure on `. We follow the physics convention that the first term

is conjugate linear. All tensor products will be taken over C. The norm of q ∈ Lx is |q|
2

= h(q, q). h induces an
Hermitian structure on Γ (`): for s1, s2 ∈ Γ (`)

〈s1|s2〉 =

∫
M

h(s1(x), s2(x))εω(x),

where

εω =

(
1

2π

)n
ω∧n

n!

is the Liouville volume form on M . We have included recurring factors of 2π in the Liouville form. This will simplify
some formulas later on, but will also have the effect that our formulas differ slightly from some of those in the
literature. The norm of s ∈ Γ (`) is ‖s‖2

= 〈s|s〉.
We will be occasionally interested in the semiclassical k = 1/h̄ → ∞ limit of `⊗k . The structures (h, 〈·|·〉,∇) on

` induce corresponding structures on `⊗k which we will denote by the same symbols. The curvature of the connection
on `⊗k is −ikω.

The program of geometric quantization associates to (M, ω) a Hilbert space H and a map Q : C∞(M) → Op(H).
To begin, we define the prequantum Hilbert space H0

k to be the L2 completion, with respect to the Liouville measure,
of the set of square integrable sections of `⊗k :

H0
k = {s ∈ Γ (`⊗k) | ‖s‖ < ∞}.

The Kostant–Souriau quantization of the Poisson–Lie algebra C∞(M) is the map

f ∈ C∞(M) 7→ Q(k)
KS( f ) = −

i

k
∇X f + f ∈ Op(H0

k)
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where X f is the Hamiltonian vector field defined by

X f yω = d f.

In Section 4 we will recall an alternate quantization of C∞(M).
As is well known, H0

k is too large for the purposes of quantization [31, Chapter 9]. If (M, ω) is Kähler there is
a standard method of choosing a subspace Hk ⊂ H0

k . In the non-Kähler case, there are (at least) two reasonable
methods: almost Kähler quantization [6,24] and Spinc quantization [13,23,25,29]. We will review these three
constructions in the next three sections.

2.2. Kähler quantization

If (M, ω, J ) is a Kähler manifold with complex structure J , there is a natural method of reducing the prequantum
Hilbert space H0

k . The complexified tangent bundle of M decomposes into ±i eigenspaces of J :

T MC = T M (1,0)
J ⊕ T M (0,1)

J . (2)

A section s ∈ Γ (`⊗k) is said to be polarized if it is tangent to the Kähler polarization T M (1,0)
J ; i.e. if ∇X s = 0 for

each X ∈ Γ (T M (0,1)).
The quantum Hilbert space is defined to be the L2 closure of the set of polarized sections of `⊗k :

Hk = {s ∈ Γ (`⊗k) | ‖s‖ < ∞, s polarized}.

This quantum Hilbert space can be described in terms of a Dirac-type operator [4, Chapter 3]. The decomposition
(2) induces a decomposition

Λ∗(T ∗M) =

n⊕
p,q=0

Λp,q(T ∗M) =

n⊕
p,q=0

Λp(T ∗M (1,0)
J )⊗ Λq(T ∗M (0,1)

J ). (3)

Let ∂k : Ω p,q(M, `⊗k) → Ω p,q+1(M, `⊗k) denote the Dolbeault operator twisted by `⊗k . Hodge’s theorem says that
ker(∂k + ∂

∗

k)
2 is isomorphic to the sheaf cohomology space H∗(M,O(`⊗k)). Kodaira’s vanishing theorem then tells

us that for k sufficiently large, Hq(M,O(`⊗k)) = 0 for q > 0, and hence that Hk = ker ∂k |Γ (`⊗k ). The dimension of
Hk can be computed with the Riemann–Roch–Hirzebruch theorem:

dk := dim Hk = R R(M, `⊗k) =

∫
M

ch(`⊗k)T d(T M (1,0)
J ). (4)

In particular, since we assume M is compact, dk < ∞.

2.3. Almost Kähler quantization

We suppose now that (M, ω) is an integral compact symplectic manifold, not necessarily Kähler. Every such
manifold admits an ω-compatible almost complex structure J , and any two such choices are homotopic. The
complexified tangent bundle again decomposes as in (2). If J is not integrable (i.e. M is not a complex manifold),
then there may be no sections s ∈ Γ (`⊗k) which are tangent to T M (1,0)

J . In this case, more work is required to define
a quantum Hilbert space.

In this section, we describe one such method, known as almost Kähler quantization, which was introduced in [6]
based on results in [15] and further studied in [11,23,24]. The idea is to replace (∂k + ∂

∗

k)
2, which does not exist if J

is not integrable, with the rescaled Laplacian ∆k := ∆ − nk, where ∆ is the Laplacian for the metric g = ω(·, J ·).
In the Kähler case, these two quantities are equated by the Bochner–Kodaira formula: ∆k = 2(∂k + ∂

∗

k)
2. The main

result of [15] is (in a slightly sharpened form due to [6,24]):

Theorem 2. Given an integral symplectic manifold (M, ω) with ω-compatible almost complex structure, there exists
a constant C and a positive constant a such that for k sufficiently large,
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(1) the first dk eigenvalues of ∆k (in nondecreasing order) lie in the interval (−a, a), and
(2) the remaining eigenvalues lie to the right of nk + C,

where dk is the Riemann–Roch number as in (4).

Motivated by this, the quantum Hilbert space is defined to be

Hk := spanC{θ
(k)
1 , . . . , θ

(k)
dk

}

where θ (k)j is an eigenfunction of ∆k with eigenvalue λ j and λ1 ≤ λ2 ≤ · · · ≤ λ j ≤ · · ·. Note that just as in the
Kähler case, the dimension is given by the Riemann–Roch number dk . This quantization has excellent semiclassical
(h̄ = 1/k → 0) properties [5,6,23,24]. It also has the advantage that the quantum Hilbert space consists of sections
of `⊗k . Spinc quantization, described in the next section, does not have either of these properties, although the Spinc

quantum states are true zero-modes of a Dirac-type operator.
In analogy with the Kähler case, we will call the elements of Hk polarized sections. Since M is compact and

the polarized sections are smooth and the quantum Hilbert space is finite dimensional, Hk is a closed subspace of
L2(M, `⊗k).

2.4. Spinc quantization

The idea of Spinc quantization is to find a suitable generalization of ∂k for the non-Kähler case. We will briefly
review the relevant details here. See [22, App D] for a more complete account of the Spinc bundle, and [13,23,25,29]
for Spinc quantization.

Let J be an ω-compatible almost complex structure on (M, ω) so that g = ω(·, J ·) is a Riemannian metric
on M . The Spinc bundle associated to the data (M, ω, J ) is defined as S(M) := Λ0,∗(T ∗M) according to the
decomposition (3). There is a Dirac-type operator 6∂k : Ω0,∗(M, `⊗k) → Ω0,∗(M, `⊗k) that decomposes into
( 6∂k)+ : Ω0,even(M, `⊗k) → Ω0,odd(M, `⊗k) and (6∂k)− : Ω0,odd(M, `⊗k) → Ω0,even(M, `⊗k).

The quantum Hilbert space associated to the data (M, ω, J ) is the virtual vector space

Hk := ker(6∂k)+ 	 ker(6∂k)−.

The dimension is again given by the Riemann–Roch number dk (4). There is a Spinc analogue of the Kodaira vanishing
theorem [6,23] which insures that Hk is an honest vector space for k sufficiently large.

The metric g on M and the Hermitian structure h on `⊗k combine to give an Hermitian structure, also denoted
by h, on S(M). Although the zero-modes of 6∂k are not sections of `⊗k since they have higher degree components,
their norms are asymptotically concentrated on the zero degree part; i.e. there exists a constant C > 0 such that for k
sufficiently large ‖s+‖ ≤ Ck−1/2

‖s0‖, for each s ∈ Hk and where s = s0 + s+ denotes the decomposition of s into
zero and higher degree components [6,23].

Just as in the Kähler and almost Kähler cases, we will refer to the elements of Hk as polarized sections. Also, since
M is compact and polarized sections are again smooth, and the space of them is finite dimensional, Hk is a closed
subspace of L2(M, S(M)).

We will assume throughout that k is chosen sufficiently large to ensure the validity of the relevant
vanishing/existence theorem.

3. Coherent states

In this section we will construct coherent states associated to an integral symplectic manifold (M, ω).

3.1. Reproducing kernels

For the Kähler, almost Kähler and Spinc quantizations of a compact symplectic manifold (M, ω) the quantum
Hilbert space is finite dimensional with dimension given by the Riemann–Roch formula (4). We will see below that
since dk < ∞ there exists a reproducing kernel for the quantum Hilbert space. In the Kähler case, the existence of
a reproducing kernel may also be established by trivializing `⊗k — polarized sections are locally holomorphic and
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standard methods from complex analysis can be used. In the non-Kähler cases no such nice local form is known to
the author, and the compactness assumption and resulting finite dimensionality become essential.

For two vector bundles π j : E j → M j , j = 1, 2 we define E1 � E2 := π∗

1 E1 ⊗ π∗

2 E2 → M1 × M2. If a vector
bundle E has an Hermitian structure h, we will identify E ' E∗. For u, v ∈ Ex we define u · v := h(u, v). Similarly,
we identify u ⊗ u = h(u, u). Moreover, if L is a line bundle, we will identify v ⊗ w = h(v,w) for v ∈ Lx , w ∈ Lx
so that L ⊗ L ' C. Combining these definitions, we see that u ⊗ v · w = h(v,w)u. These conventions agree since
u ⊗ v ⊗ w = h(v,w)u = h(v, u)w = u ⊗ v · w. Finally, we define u ⊗ v := u ⊗ v.

Many of the results in this section hold for all three methods of quantization. To unify notation and avoid repetition
we define

Lk
:=

{
`⊗k for Kahler and almost Kahler quantization
Λ0,∗(T ∗M)⊗ `⊗k for Spinc quantization.

Let {θ
(k)
j }

dk

j=1
be a unitary basis for Hk .

Definition 3. The reproducing kernel K (k)
∈ Γ (Lk � Lk) is the section

K (k)(x, y) :=

dk∑
j=1

θ
(k)
j (x)⊗ θ

(k)
j (y).

K (k) is also known as a generalized Bergman kernel. Note that K (k) does not depend on the choice of unitary basis.
In the Kähler and Spinc quantization schemes, the quantum Hilbert space is the kernel of a Dirac-type operator, and

the reproducing kernel is the large t limit of the associated heat kernel (see Section 4.2). Although it is not a function
on M × M , the reproducing kernel K (k) has many of the same properties enjoyed by reproducing kernels for analytic
function spaces.

Theorem 4. K (k) is the unique polarized section of Lk � Lk such that∫
M

K (k)(x, y) · s(y) εω(y) = s(x) ∀s ∈ Hk .

Proof. Suppose there are two reproducing kernels. Their difference evaluated against an arbitrary section s ∈ Hk
must be zero. Hence this difference must be in Hk ⊗ (Hk)

⊥. But since both kernels are polarized, the difference is in
Hk ⊗ Hk and is therefore zero. �

The restriction of K (k) to the diagonal is a smooth function.

Definition 5. The coherent density is the smooth function ε(k) ∈ C∞(M) defined by

ε(k)(x) := K (k)(x, x) =

dk∑
j=1

|θ
(k)
j (x)|2.

Since M is compact and ε(k) is smooth and nonnegative, we may define a measure on M by µ(k) = ε(k)εω which we
will call the coherent measure.

Since Hk ⊆ L2(M, Lk) is a closed subspace, there is a projection Πk : L2(M, Lk) → Hk . To find the Schwartz
kernel of this projection, we need the following observation (which follows from the facts that L2(R2n,C) is separable
and that since M is compact it has a finite cover by open sets which are diffeomorphic to subsets of R2n).

Theorem 6. L2(M, Lk) is a separable Hilbert space.

Theorem 7. The Schwartz kernel of Πk is the reproducing kernel K (k).
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Proof. We need to show that

(Πks) (x) =

∫
M

K (k)(x, y) · s(y)εω(y) ∀s ∈ L2(M, Lk).

Since Πk is a projection, it is uniquely characterized by im Πk = Hk and Π 2
k = Πk = 1Hk .

Let {θ
(k)
j }

∞

j=1
be a unitary basis for L2(M, Lk) such that spanC{θ

(k)
j }

dk

j=1
= Hk . Then for each s ∈ L2(M, Lk)

there exists {s j
∈ C}

∞

j=1 such that ‖s −
∑N

j=1 s jθ
(k)
j ‖

2
→ 0 as N → ∞. We then have

∫
M

K (k)(x, y) · s(y)εω(y) =

dk∑
j=1

θ
(k)
j (x)

∫
M

∞∑
l=1

slh(θ (k)j (y), θ (k)l (y))εω(y). (5)

Using Hölder’s inequality we see that

∞∑
l=1

|sl
|
2
∫

M
|h(θ (k)j (y), θ (k)l (y))|εω(y) ≤

∞∑
l=1

|sl
|
2
‖θ
(k)
j (y)‖2

‖θ
(k)
l (y)‖2

= ‖s‖2.

Hence, the integrand is absolutely integrable and we may interchange the integral and sum in (5) to obtain∫
M

K (k)(x, y) · s(y)εω(y) =

dk∑
j=1

θ
(k)
j (x) ∈ Hk

as desired.
Moreover, for s =

∑dk
j=1 s jθ

(k)
j (x) ∈ Hk , we easily obtain Π 2

k s = Πks in terms of K (k) since all of the relevant

sums are finite. We conclude that K (k) is the Schwartz kernel of Πk as desired. �

3.2. Coherent states

We now define the coherent states associated to an integral compact symplectic manifold (M, ω).

Definition 8. The coherent state localized at x ∈ M is

Φ(k)
x := K (k)(x, ·) =

dk∑
j=1

θ
(k)
j (x)⊗ θ

(k)
j .

In order to distinguish these coherent states from others, we will sometimes refer to them as symplectic coherent
states. Observe that Φ(k) depends smoothly and antiholomorphically on x in the generalized sense: a section is
holomorphic on a symplectic manifold if it is polarized.

Since Φ(k)
x ∈ Lk

x ⊗ Hk , it is necessary to investigate how Φ(k)
x should be interpreted as a quantum state. Consider

the case of almost Kähler quantization. If we trivialize `⊗k
x with a unit, Φ(k)

x becomes a well-defined state in Hk via
the identification 1⊗θ

(k)
j ' θ

(k)
j . The different unit trivializations of `⊗k

x are parameterized by U (1) which means that

Φ(k)
x is a well-defined quantum state up to a phase — the usual situation in quantum mechanics. On the other hand,

quantum states are most properly regarded as rays in the projective Hilbert space PHk . It follows from the above
discussion that the map x ∈ M 7→ C · Φ(k)

x ∈ PHk is well-defined and smooth. If it is not possible to find a global
unit section of `⊗k then there is no smooth lift of Φ(k) to Hk .

In [24], this map is shown to be asymptotically symplectic (as k → ∞), asymptotically isometric with respect to
the metric g = ω ◦ J , and, for k sufficiently large, an embedding (see [7] for similar results).

We now return our attention to the general case of almost Kähler or Spinc quantization. It is sometimes convenient
to work with normalized states. In terms of coherent states, Definition 5 reads

Theorem 9. ‖Φ(k)
x ‖

2
= ε(k)(x).
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This is the reason ε(k) is called the coherent density.
Let Mk := {x ∈ M | ε(k)(x) 6= 0}. By Corollary 12, Mk is the complement of the base locus of Hk . For x ∈ Mk

we will denote the normalized coherent state localized at x by

Φ̃(k)
x := |x (k)〉 :=

Φ(k)
x√

ε(k)(x)
.

For x 6∈ Mk we define Φ̃(k)
x = |x (k)〉 := 0. We can now state the reproducing property concisely:

〈Φ(k)
x |s〉 = s(x)√
ε(k)(x)〈x (k)|s〉 = s(x) ∀x ∈ M,∀s ∈ Hk .

For x 6∈ Mk the above is justified by Corollary 12.
If x ∈ Mk then C · Φ(k)

x = C · |x (k)〉 ∈ PHk so that we may define the projection proj|x (k)〉 : Hk → Hk by

s 7→ (ε(k)(x))−1
|Φ(k)

x 〉〈Φ(k)
x |s〉 = |x (k)〉〈x (k)|s〉. (6)

We will also write projC·Φ(k)
x

= |x (k)〉〈x (k)| = (ε(k)(x))−1
|Φ(k)

x 〉〈Φ(k)
x | for this projection.

The following is a generalization of a result in [2] and is the basic reason why the quantum Hilbert space behaves
in many ways like a weighted analytic function space, even on non-Kähler manifolds. We will further develop this
analogy in Section 4.1.

Theorem 10. For each polarized section s ∈ Hk ,

|s(x)| ≤ ‖s‖
√
ε(k)(x).

Proof. Let s ∈ Hk . We use the reproducing property of the coherent states to write, for x ∈ Mk ,

|s(x)|2 = h(s(x), s(x)) = h(〈Φ(k)
x |s〉, 〈Φ(k)

x |s〉) = |〈Φ(k)
x |s〉|2.

The result then follows from the Cauchy–Schwartz inequality and Theorem 9.
If x 6∈ Mk then ε(k)(x) = 0 implies θ (k)j (x) = for all j . Since s is a linear combination of θ (k)j , this implies

s(x) = 0. �

This theorem has two useful corollaries. The proofs are simple and left to the reader.

Corollary 11. The evaluation map evx : s ∈ Hk 7→ s(x) ∈ Lk
x is continuous.

We can also prove Corollary 11 directly — it follows from the facts that dk < ∞ and that the sets {|θ
(k)
j (x)|}

dk

j=1

and {‖θ
(k)
j ‖}

dk

j=1
are bounded, which in turn follow from our assumption that M is compact.

In the Kähler case, the compactness assumption on M can be lifted. The existence of the reproducing kernel, as
well as Theorem 10, can then be deduced from Jensen’s formula [21, p. 324]: if f is holomorphic on the closed disc
of radius R and f (0) 6= 0, and the zeroes of f in the open disc, ordered by increasing moduli and repeated according
to multiplicity, are z1, . . . , zN , then

| f (0)| ≤
‖ f ‖R

RN |z1 · · · zN |.

Unfortunately, the author is unaware of nice local forms of polarized sections in the Spinc and almost Kähler
quantizations of a non-Kähler manifold. This makes the assumption that M is compact, or more precisely that dk < ∞,
essential. Of course, it is also not clear whether the spectrum of the rescaled Laplacian has the requisite structure to
define the almost Kähler quantization of M in the non-compact case.

On the other hand, most of the results of this paper hold for any choice of finite dimensional subspace of the
prequantum Hilbert space H0

k . The primary advantages of almost Kähler and Spinc quantization are that they provide
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canonical methods for choosing such a subspace and that they provide enough structure to ensure a meaningful
semiclassical limit (cf. (15)).

The next corollary justifies our definition of the normalized coherent state |x (k)〉 in the case that ε(k)(x) = 0.

Corollary 12. ε(k)(x) = 0 if and only if s(x) = 0 for each polarized section s.

In Sections 3.4, 5 and 6 we will be interested in the semiclassical limit of the symplectic coherent states. It will
be useful to express Φ(k)

x in terms of the peak sections of Ma–Marinescu [24], defined as follows. The Kodaira map
Ψ (k)

: Mk → PH∗

k , which sends x ∈ Mk to the hyperplane {s ∈ Hk | s(x) = 0} of sections which vanish at

x , is base point free for large enough k. Construct an unitary basis {θ
(k)
1 , . . . , θ

(k)
dk−1, S(k)x } such that θ (k)j (x) = 0 for

1 ≤ j ≤ dk − 1. Then S(k)x , called a peak section, is a unit norm generator of the orthogonal complement of Ψ (k)(x).
Observe that

Φ(k)
x (y) = K (k)(x, y) = S(k)x (x)⊗ S(k)x (y) (7)

and also that ε(k)(x) = |S(k)x (x)|2. Moreover,∫
M

|S(k)x (y)|2εω(y) = 1. (8)

3.3. Rawnsley-type coherent states

The coherent states defined in [28] for compact Kähler manifolds are a generalization of Bargmann’s principal
vectors [2] to spaces of holomorphic sections. We will describe their relation to symplectic coherent states in this
section. Due to Corollary 11, we are able to construct Rawnsley-type coherent states on any compact integral
symplectic manifold. In this section, we will consider only the almost Kähler quantization of M so that the prequantum
bundle is `⊗k .

By Corollary 11, for each q ∈ `x we get a continuous map δq : Hk → C by composing the evaluation evx with

the trivialization s(x) = δq(s)q⊗k . By the Riesz representation theorem, there exists e(k)q ∈ Hk such that

〈e(k)q |s〉q⊗k
= δq(s)q

⊗k
= s(π(q)) ∀s ∈ Hk .

Observe that

e(k)cq = c−ke(k)q

for 0 6= c ∈ C. We will refer to the section e(k)q as a Rawnsley-type coherent state. We can express the reproducing

kernel, and therefore the symplectic coherent states, in terms of e(k)q :

Theorem 13. Let x ∈ M and q ∈ `x . Then

K (k)(x, y) = q⊗k
⊗ e(k)q (y).

Equivalently, Φ(k)
x = q⊗k

⊗ e(k)q .

Proof. In terms of the unitary basis {θ
(k)
j }

dk

j=1
for Hk we have

s(x) = 〈Φ(k)
x |s〉 =

dk∑
j=1

〈θ
(k)
j |s〉θ (k)j (x) =

dk∑
j=1

〈θ
(k)
j |s〉θ̃q

j (x)q
⊗k

= 〈e(k)q |s〉q⊗k

where θ̃q
j is the trivialization of θ (k)j determined by a local section with value q⊗k at x . Therefore

e(k)q =

∑
j

θ̃
q
j (π(q))θ

(k)
j . (9)
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Hence we obtain,

q⊗k
⊗ e(k)q = Φ(k)

π(q). �

Let s0 : M → `×. In [28], Rawnsley defines a function

η(x) := 〈e(1)s0(x)
|e(1)s0(x)

〉|s0(x)|
2.

It is easy to check that this function is independent of s0. This function was also studied for Kähler M in [9,10] and in
the almost Kähler case in [7]. A short calculation using the previous theorem yields:

Corollary 14. η = ε(1).

3.4. Transition amplitudes

In this section we define the 2-point transition amplitude for symplectic coherent states and show that it can be
interpreted as a probability density on M .

Definition 15. The 2-point function, or transition amplitude, is

ψ (k)(x, y) := |〈x (k)|y(k)〉|2 ∈ C∞(M × M).

In terms of the reproducing kernel, the 2-point function is

ψ (k)(x, y) =
K (k)(y, x) · K (k)(x, y)

ε(k)(x)ε(k)(y)
.

As expected, ψ (k)(x, x) = 1. The Cauchy–Schwartz inequality

|〈Φ(k)
x |Φ(k)

y 〉|
2

≤ ‖Φ(k)
x ‖

2
‖Φ(k)

y ‖
2

implies ψ (k)(x, y) ∈ [0, 1]. Since the map x 7→ C · Φ(k)
x is an embedding for k sufficiently large [24], x 6= y implies

Φ(k)
x 6= Φ(k)

y so that ψ (k)(x, y) = 1 if and only if x = y.

Theorem 16. For each x ∈ Mk ,ψ (k)(x, y) is a probability density on M with respect to the coherent measureµ(k)(y).

Proof. For each x with ε(k)(x) 6= 0,∫
M
ψ (k)(x, y) dµ(k)(y) =

1

ε(k)(x)

∫
M

K (k)(y, x) · K (k)(x, y)εω(y) = 1. � (10)

In [10], Cahen–Gutt–Rawnsley define a 2-point function for Kähler M in terms of Rawnsley-type coherent states:

ψ ′(x, y) =

|〈e(1)q |e(1)q ′ 〉|
2

‖e(1)q ‖2‖e(1)q ′ ‖2

where x = π(q) and y = π(q ′). By Theorem 13 we see that ψ ′
= ψ (1). Moreover, if the quantization is regular

(i.e. ε(k)(x) = const for all k) then it follows from [10, Proposition 2 and equation 1.7] that ψ (k) = (ψ (1))k .
The transition amplitude can be expressed in terms of peak sections by a simple calculation using Eq. (7):

Theorem 17. ψ (k)(x, y)µ(k)(y) = |S(k)x (y)|2

Theorem 16 is therefore equivalent to (8).
Finally, we note here that the association to each h̄ = 1/k, k ∈ Z+ of Hk , C · Φ(k)

x and µ(k) defines a pure state
quantization of the integral symplectic manifold (M, ω) (see [20, p. 113] for the definitions).
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4. Berezin–Toeplitz quantization

In this section we study the Berezin quantization [3] induced by the coherent state map Φ(k). This method of
quantization is studied in detail in the context of analytic function spaces in [20]. The extension to Hilbert spaces of
sections of the prequantum bundle can be described in terms of symplectic coherent states.

4.1. Overcompleteness and characteristic sets

In this section we consider the most important property of coherent states: overcompleteness.

Definition 18. A system of coherent states {|x〉 ∈ Hk | x ∈ M} is overcomplete with respect to a measure µ if

(1) 〈x |y〉 6= 0 for all x, y ∈ M with |x〉, |y〉 6= 0, and
(2)

∫
M |x〉〈x | dµ(x) = 1Hk .

Theorem 19. The system of symplectic coherent states {|x (k)〉 | x ∈ M} defined in Section 3 is overcomplete with
respect to the coherent measure µ(k). In particular,∫

M
|x (k)〉〈x (k)| dµ(k)(x) = 1Hk . (11)

Proof. We compute, for every s1, s2 ∈ Hk ,

〈s1|

∫
M

|x (k)〉〈x (k)| dµ(k)(x)|s2〉 =

∫
M

〈s1|Φ(k)
x 〉〈Φ(k)

x |s2〉 εω(x)

=

∫
M

h(s1(x), s2(x)) εω(x) = 〈s1|s2〉.

so that
∫

M |x (k)〉〈x (k)| dµ(k) = 1Hk as desired. �

Corollary 20. There exist points x1, . . . , xdk ∈ M such that {|x (k)1 〉, . . . , |x (k)dk
〉} is a basis for Hk .

Proof. Let x1 ∈ Mk and set S1 = {|x (k)1 〉}. If dk = 1 then S is a basis for Hk . Suppose dk > r ≥ 1 and

let Sr = {|x (k)1 〉, . . . , |x (k)r 〉} be a set of linearly independent vectors in Hk . Since dk > r , there is some vector
|ψ〉 6∈ spanCSr . Suppose for every x ∈ M that |x (k)〉 ∈ spanCSr . Then∫

M
|x (k)〉〈x (k)|ψ〉dµ(k)(x) ∈ spanCSr .

which implies∫
M

|x (k)〉〈x (k)|ψ〉dµ(k)(x) 6= |ψ〉.

This contradicts Theorem 19. Hence, there is some x ∈ M such that |x (k)〉 6∈ spanCSr . Let xr+1 = x . Then Sr+1 is a
linearly independent set in Hk . We continue inductively. Since dk < ∞, the process must stop, and the resulting set
is the required linearly independent set. �

This corollary motivates the following definition, which is a generalization of the characteristic point sets
introduced in [2].

Definition 21. A set S ⊆ M is characteristic if for every s ∈ Hk ,

s|S = 0 implies s = 0.

Theorem 22. If S ⊆ M is characteristic, then {|x (k)〉 | x ∈ S} is complete.

Proof. If s(x) = 0 for all x ∈ S implies s = 0, then 〈x (k)|s〉 = 0 for all x ∈ S implies s = 0. Hence, the only vector
orthogonal to {|x (k)〉 | x ∈ S} is 0, which means S is complete. �
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4.2. Quantization

In this section we study the quantizing map Q : C∞(M) → Op(Hk) resulting from the overcompleteness relation
(11). Applying Berezin’s method of quantization [3], we have

Definition 23. The Berezin quantization Q(k)( f ) of f ∈ C∞(M) is the operator

Q(k)( f ) :=

∫
M

f (x)|x (k)〉〈x (k)| dµ(k)(x).

In fact, Q(k)( f ) converges for f ∈ L∞(M). Some basic theorems about Berezin’s method of quantization of
analytic function spaces apply in this case; see for example [20, Theorem 1.3.5]. There is another way to describe the
Berezin quantization of f . For each s ∈ L2(M, Lk) we have

(Πks) (x) =

∫
M

K (k)(x, y) · s(y)εω(y) = 〈Φ(k)
x |s〉.

Therefore

(Q(k)( f )s)(x) =

(∫
M

f (y)|y(k)〉〈y(k)|s〉 dµ(k)(y)
)
(x)

=

∫
M

K (k)(x, y) · ( f (y)(Πks)(y))εω(y) =
(
Πk ◦ M f ◦ Πks

)
(x)

where M f denotes the multiplication operator. In this form, Q(k)( f ) is known as the Toeplitz quantization of f . The
Berezin–Toeplitz quantization and Kostant–Souriau quantizations of f are related by Tuynman’s formula [30]:

Πk ◦ Q(k)
KS( f ) ◦ Πk = Q(k)

(
f −

1
2k

∆ f

)
where ∆ is the Laplacian associated to the metric g = ω(·, J ·). See [8] for the theory of generalized Toeplitz operators,
and [5] for an analysis of the semiclassical properties of Q(k).

We can recast Berezin’s covariant symbol [3] in terms of the symplectic coherent states.

Definition 24. The covariant symbol Â ∈ C∞(M) associated to the operator A ∈ Op(Hk) is

Â(x) := 〈x (k)|A|x (k)〉,

where A|x (k)〉 :=
∑dk

j=1 θ
(k)
j (x)⊗ Aθ (k)j .

A consequence of Theorem 13 is that Definition 24 agrees with the covariant symbol defined in [9] for Kähler M
using Rawnsley-type coherent states. A standard result involving Berezin’s covariant symbol is true in our case as
well (see [10] for an analogous computation with Rawnsley-type coherent states):

Theorem 25. Tr A =
∫

M Â(x) dµ(k)(x).

We conclude this section by pointing out the relationship, in the Spinc and Kähler cases, between symplectic
coherent states and the heat kernel of the appropriate Dirac-type operator. See [4, Chapter 3] for a detailed analysis of
the heat kernel, some properties of which we will use below.

The heat kernel K (k)
t ∈ C∞(R+ × M × M, Lk � Lk) of the Laplacian associated to ∂k (or 6∂k in the Spinc case)

admits an expansion

K (k)
t (x, y) =

∞∑
j=0

e−λ j tθ
(k)
j (x)⊗ θ

(k)
j (y) (12)



W.D. Kirwin / Journal of Geometry and Physics 57 (2007) 531–548 543

where 0 ≤ λ1 ≤ λ2 ≤ · · · → ∞ are the eigenvalues of the Laplacian with corresponding eigenmodes θ (k)j ∈ Γ (Lk).
Moreover,∣∣∣∣∣ ∞∑

j=dk+1

e−tλ j θ
(k)
j ⊗ θ

(k)
j

∣∣∣∣∣ ≤ Ce−λdk+1t

for some constant C > 0 [4, Proposition 2.37]. Hence, the large time limit of the heat kernel is a symplectic coherent
state:

lim
t→∞

K (k)
t (x, y) = Φ(k)

x (y).

In the almost Kähler case, although the heat kernel has an expansion of the form (12), the low lying eigenvalues of
the polarized states are not necessarily zero, and so the large time limit of the heat kernel is not directly related to the
symplectic coherent states.

Finally, observe thatµ(k) = limt→∞ Tr K (k)
t and so Theorem 25, applied to the identity operator, yields the familiar

index formula dk =
∫

M limt→∞ Tr K (k)
t .

5. Classical and semiclassical behavior

5.1. Classical behavior for finite k

In this section we show that the coherent states defined in Section 3 are the quantum states that behave most
classically: they are maximally peaked and evolve classically.

Consider for a moment the almost Kähler quantization of M so that the prequantum bundle Lk is the line bundle
`⊗k . In this case, the coherent state Φ(k)

x is the projection of the Dirac distribution onto Hk . To see why, let x ∈ M
and trivialize `⊗k over an open set U containing x with a unit section s0. Let δ̃(k)x denote the Dirac distribution on U
centered at x and define

δ(k)x (y) =

{
δ̃(k)x (y)s0(x)⊗ s0(y) for y ∈ U
0 otherwise.

Then

〈δ(k)x |s〉 = s(x) ∀s ∈ C1(M, `⊗k).

δ
(k)
x does not depend on our choice of s0. We now see that Φ(k)

x is the projection onto Hk of δ(k)x since(
Πkδ

(k)
x

)
(y) =

∫
M

K (k)(y, z) · δ(k)x (z)εω(z) = Φ(k)
x (y).

We next observe that symplectic coherent states are maximally peaked quantum states. The following result holds
for coherent states arising from Kähler, almost Kähler and Spinc quantization.

Theorem 26. Φ(k)
x maximizes |s(x)|2 over all s ∈ `⊗k

x ⊗ Hk with ‖s‖2
= ε(k)(x).

Proof. As in Theorem 10 we write

|s(x)|2 = |〈Φ(k)
x |s〉|2.

This is minimized when we have equality in the Cauchy–Schwartz inequality, which occurs when s is proportional to
Φ(k)

x . �

In the almost Kähler case, we can say more: Φ(k)
x evolves classically. Suppose f ∈ C∞(M) is such that the

Hamiltonian vector field X f is complete. The flow of X f induces a Hamiltonian evolution of sections in the quantum
Hilbert space as follows [31, Section 8.4]:
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We can lift the Hamiltonian vector field X f to a vector field V f on T (`⊗k); that is, there exists a unique vector field
on `⊗k defined by π∗V f = X f and 1

k V f yα =
1
k V f yα = f ◦π , where α is the connection 1-form on the complement

of the zero section of `⊗k . If the fiber coordinate is z = reiφ in a local trivialization, then

V f = X f + kL
∂

∂φ

where L = X f y τ + f is the Lagrangian associated to f by a local symplectic potential τ . Locally, T `⊗k
' T M ×C

and we have identified X f ∈ T M and ∂
∂φ

∈ T C with the corresponding vector fields in T M × C. The flow
ξt of V f is fiber preserving and projects to the flow ρt of X f . Moreover, ξt induces a linear pull-back action
ρ̂t : Γ (`⊗k) → Γ (`⊗k) by

ξt (ρ̂t s(x)) = s(ρt x). (13)

In fact, this action is infinitesimally generated by the Kostant–Souriau quantization of f :

d
dt
ρ̂t = ik Q(k)

KS( f )ρ̂t .

This is one of the motivations for the Kostant–Souriau quantization Q(k)
KS of f . The restriction of ρ̂t to H0

k is a
1-parameter unitary group.

Extending the action of ξt to `⊗k � `⊗k in the obvious way, we have:

Theorem 27. For f ∈ C∞(M) such that X f is complete,

ξtΦ(k)
x (y) = Φ(k)

ρt x (ρt y); (14)

i.e. the symplectic coherent states evolve classically. Equivalently,

ρ̂tΦ(k)
x = Φ(k)

x .

Proof. Since ρ̂t is a unitary endomorphism of H0
k , we have

ρ̂tΦ(k)
x (y) =

dk∑
j=1

ρ̂tθ
(k)
j (x)⊗ ρ̂tθ

(k)
j (y)

=

dk∑
j=1

(
θ
(k)
j (x)

)
t ρ̂t ⊗ ρ̂tθ

(k)
j (y)

= Φ(k)
x (y). �

5.2. The semiclassical limit

The asymptotic analysis of generalized Bergman kernels by Ma–Marinescu reveals the semiclassical behavior of
peak sections [24, equation 3.24]. Let {rk} be a sequence of real numbers with rk → 0 and

√
k rk → ∞ as k → ∞.

Denote by B(x, r) the open geodesic ball of radius r centered at x ∈ M . Then∫
B(x,rk )

|S(k)x (y)|2εω(y) = 1 − O(1/k), k → ∞. (15)

Comparing this with (8) we see that the peak section S(k)x is asymptotically concentrated about x . In terms of the
transition amplitude, (15) is∫

B(x,rk )

ψ (k)(x, y) µ(k)(y) = 1 − O(1/k), k → ∞. (16)

Combining this with Theorem 16, we have:



W.D. Kirwin / Journal of Geometry and Physics 57 (2007) 531–548 545

Theorem 28. If f ∈ C1(M) then

lim
k→∞

∫
M

f (y)ψ (k)(x, y)µ(k)(y) = f (x);

that is, limk→∞ ψ (k)(x, y)µ(k)(y) = δx (y).

Proof. Let {rk} be a sequence of positive real numbers with rk → 0 and
√

k rk → ∞. By Theorem 17 we have, for
each x ∈ Mk ,∣∣∣∣∫

M
( f (y)− f (x))ψ (k)(x, y) dµ(k)(y)

∣∣∣∣ ≤

∫
B(x,rk )

| f (y)− f (x)| |S(k)x (y)|2εω(y)

+

∫
M\B(x,rk )

| f (y)− f (x)| |S(k)x (y)|2εω(y). (17)

The first integral on the right hand side of (17) goes to zero as k → ∞ because of (15) and the fact that f is continuous.
The second integral on the right hand side of (17) goes to zero since f (x)− f (y) is bounded (specifically as a function
of y) and Eqs. (15) and (8) imply that the peak sections go to zero outside the ball B(x, rk). �

Of course, there is a physical reason to expect this behavior. The coherent state localized at x should be the quantum
state most concentrated about x . In the semiclassical limit, we expect to recover the classical picture — in particular
the classical state most concentrated about x is the Dirac distribution at x .

6. Examples

6.1. The complex plane

This example is well known [17,31]. We will take z =
1

√
2
(x + iy), use the standard symplectic form ω =

idz ∧ dz̄, and trivialize the prequantum line bundle (globally since C is contractible) with the symplectic potential
τ =

i
2 (zdz̄ − z̄dz). The space Hk = { f (z)e−k|z|2/2

} of polarized sections of `⊗k relative to the standard complex

structure can be identified with a weighted Bargmann space [2]. A unitary basis for Hk is {

√
k
j ! z j e−k|z|2/2

} j∈N. The

reproducing kernel is the usual Bergman kernel

K (k)(w, z) = k
∞∑
j=0

(w̄z) j

j !
e−k|z|2/2−k|w|

2/2
= kew̄z−k|z|2/2−k|w|

2/2.

The coherent density is ε(k) = k and the 2-point function is e−k|z−w|
2
. In this case, it is easy to see that the semiclassical

limit yields the expected results:

lim
k→∞

ψ (k)(w, z)µ(k)(z) = lim
k→∞

(
k

2π

)
e−k|w−z|2ω = δ(w − z)ω.

6.2. The 2-sphere

Coherent states on S2 are constructed by Perelomov in [27] using Lie group techniques. As we will see, the
construction of Section 3 yields the same results without using any group structure. The correspondence between the
two methods is due to Theorem 4 and the fact that Perelomov’s coherent states are reproducing.

We trivialize S2
' CP1

= {[z0, z1]}/C over the open set U0 = {[z0, z1] | z0 6= 0}. Define a local coordinate
z = z1/z0. The Fubini-Study symplectic form on U0 is

ω =
idz ∧ dz̄

(1 + |z|2)2
.



546 W.D. Kirwin / Journal of Geometry and Physics 57 (2007) 531–548

Trivializing `⊗k with the symplectic potential τ = (1 + |z|2)−1i z̄dz, the Hermitian form on `⊗k is given by
h(p, q) = (1 + |z|2)−k pq. We then have the following unitary basis for Hk :{√

(k + 1)
(

k

j

)
z j

| 0 ≤ j ≤ k

}
.

The coherent state localized at w is therefore

Φ(k)
w (z) = (k + 1)

k∑
j=0

(
k

j

)
(w̄z) j

= (k + 1)(1 + w̄z)k .

The corresponding coherent density is ε(k) = k + 1; one must take care to include the extra factors arising from the
Hermitian structure when evaluating Φ(k)

w (w). In this case, Theorem 28 becomes

lim
k→∞

ψ (k)(w, z)µ(k)(z) = lim
k→∞

k + 1
2π

[
(1 + w̄z)(1 + wz̄)

(1 + |z|2)(1 + |w|2)

]k idz ∧ dz̄

(1 + |z|2)2
= δ(w − z).

6.3. The 2-torus

For λ = λ1 + iλ2 ∈ C with Im λ > 0, let T 2(λ) = C/{m + nλ | m, n ∈ Z}. λ is known as the modulus of
the torus. The standard symplectic form ω = 2π iλ−1

2 dz ∧ dz̄ on C, normalized to be integral on T 2(λ), descends to
a symplectic form on T 2(λ). The prequantum line bundle `⊗k can be lifted to a line bundle over C (since C is the
universal cover of T 2(λ)). The resulting line bundle can be globally trivialized. Hence we will identify sections of `⊗k

with appropriately pseudoperiodic functions on C.
If we trivialize with the symplectic potential τ = iπλ−1

2 (zdz̄ − z̄dz) then the Hermitian form is given by
h(p, q) = pq . A unitary basis for the quantum Hilbert space can be given in terms of ϑ-functions. Let

ϑ j (λ; z) =

∑
n∈Z

eiλπ(kn2
+2 jn)+2π i

√
2( j+kn)z,

ψ
(k)
j (z, z̄) = ekπ z(z−z̄)/λ2ϑ j (λ; z), and

Nk, j = ‖ψ
(k)
j ‖

2
=

1
√

2kλ2
e2π j2λ2/k .

A unitary basis for Hk is {N−1/2
k, j ψ

(k)
j (z, z̄)}

k−1

j=0
. From this we construct the coherent state localized at w =

1
√

2
(w1 + iw2):

Φ(k)
w (z) =

k−1∑
j=0

√
2kλ2 e−2π j2λ2/ke

√
2π ik(zy−w̄w2)/λ2ϑ j (λ;w)ϑ j (λ; z).

The coherent density is

ε(k)(z) =

√
2kλ2e−2πky2/λ2

k−1∑
j=0

e−2π j2λ2/k
|ϑ j (λ; z)|2.

The semiclassical limit (Theorem 28) yields the identity

δ(w − z) = lim
k→∞

ψ (k)(w, z)µ(k)(z)

= lim
k→∞

√
2kλ2 e−2πkw2

2/λ2

(
k−1∑
j=0

e−2π j2λ2/k
|ϑ j (λ; z)|2

)−1

·

k−1∑
j,l=0

e−2π( j2
+l2)

λ2
k ϑ j (λ;w)ϑl(λ, z)ϑ j (λ; z)ϑl(λ;w)

2π i

λ2
dz ∧ dz̄.
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6.4. Higher genus Riemann surfaces

We will construct coherent states on a compact Riemann surface Σg of genus g ≥ 2 by uniformizing Σg as the
quotient of the complex upper half plane H = {z ∈ C | Im z > 0} by a Fuschian group Γ (see [1,16] for details). The
coherent states in this section correspond to those of Klimek–Lesniewski [19, equation 4.5].

Let Γ < P SL(2,Z) be a Fuschian group. P SL(2,Z), and hence Γ , acts on H by fractional linear transformations.
The space Σg := Γ \H is a compact manifold if and only if Γ is a hyperbolic group, which we will henceforth assume.
The Kähler form ω = i(Im z)−2dz ∧ dz̄ descends to a symplectic form on Σg , as do the complex structure and Kähler
metric.

For γ =

(
a b
c d

)
∈ Γ and z ∈ H define j (γ, z) := cz + d. An automorphic form of weight k relative to Γ is a

function f : H → C such that f (γ z) = j (γ, z)k f (z). The space Ak(H) of automorphic forms on H of weight k
relative to Γ has an Hermitian product

〈 f |g〉k =

∫
H

f (z)g(z)(Im z)k
ω

2π
.

The bundle ` := T ∗Σ (1,0)
g is a prequantum bundle for Σg since its curvature is −iω. The quantum Hilbert space

Γ (Σg,O(T ∗Σ (1,0)
g )) is isomorphic toA2(Σg). Sections of `⊗k correspond to automorphic forms of weight 2k relative

to Γ restricted to Σg . The Hermitian form descends to Σg and is known as the Weil–Petersson inner product.
The reproducing kernel for A2k(H) is known (see for example [26]) and descends to Σg via a Poincaré series. The

resulting coherent state localized at w is

Φ(k)
w (z) =

k − 1
2

∑
γ∈Γ

(
2i

γ z − w̄

)k

j (γ, z)−k .

The associated coherent density is

ε(k)(z) = (k − 1)
∑

{γ,γ−1}⊂Γ

Re
[

2i

(γ z − z̄) j (γ, z)

]2k

.

Finally, the semiclassical limit of Theorem 28:

δ(w − z) = lim
k→∞

ψ (k)(w, z)µ(k)(z)

= lim
k→∞

k − 1
2π

4k−1(Im z)k−2(Imw)k

 ∑
{γ,γ−1}⊂Γ

Re
[

2i

(γ z − z̄) j (γ, z)

]2k
−1

·

∑
γ,γ ′∈Γ

(|γ z − w̄| | j (γ, z)|)−2k idz ∧ dz̄.

Acknowledgements

The author is grateful to Siye Wu for many valuable discussions and suggestions. He would also like to thank
Xiaonan Ma for bringing to his attention the papers [11,23,24] as well as for several helpful comments.

References
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[14] V. Guillemin, S. Sternberg, Geometric Asymptotics, in: Mathematical Surveys, vol. 14, American Mathematical Society, 1977.
[15] V. Guillemin, A. Uribe, The laplace operator on the n-th tensor power of a line bundle: Eigenvalues which are uniformly bounded in n,

Asymptotic Analysis 1 (1988) 105–113.
[16] J. Jost, Compact Riemann Surface, Springer-Verlag, Berlin, 2002.
[17] J.R. Klauder, B.-S. Skagerstam (Eds.), Coherent States, World Scientific Publishing, 1985.
[18] S. Klimek, A. Lesniewski, Quantum riemann surfaces: I. The unit disc, Communications in Mathematical Physics 146 (1992) 103–122.
[19] S. Klimek, A. Lesniewski, Quantum Riemann surfaces: II. The discrete series, Letters in Mathematical Physics 24 (1992) 125–139.
[20] N.P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer, 1998.
[21] S. Lang, Complex Analysis, Springer-Verlag, 1993.
[22] H.B. Lawson Jr., M.-L. Michelsohn, Spin Geometry, Princeton University Press, 1989.
[23] X. Ma, G. Marinescu, The spinc dirac operator on high tensor powers of a line bundle, Mathematische Zeitschrift 240 (3) (2002) 651–664.
[24] X. Ma, G. Marinescu, Generalized bergman kernels on symplectic manifolds, Comptes Rendus Mathématique. Académie des Sciences. Paris
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